Computational analysis in epilepsy neuroimaging: A survey of features and methods
نویسندگان
چکیده
Epilepsy affects 65 million people worldwide, a third of whom have seizures that are resistant to anti-epileptic medications. Some of these patients may be amenable to surgical therapy or treatment with implantable devices, but this usually requires delineation of discrete structural or functional lesion(s), which is challenging in a large percentage of these patients. Advances in neuroimaging and machine learning allow semi-automated detection of malformations of cortical development (MCDs), a common cause of drug resistant epilepsy. A frequently asked question in the field is what techniques currently exist to assist radiologists in identifying these lesions, especially subtle forms of MCDs such as focal cortical dysplasia (FCD) Type I and low grade glial tumors. Below we introduce some of the common lesions encountered in patients with epilepsy and the common imaging findings that radiologists look for in these patients. We then review and discuss the computational techniques introduced over the past 10 years for quantifying and automatically detecting these imaging findings. Due to large variations in the accuracy and implementation of these studies, specific techniques are traditionally used at individual centers, often guided by local expertise, as well as selection bias introduced by the varying prevalence of specific patient populations in different epilepsy centers. We discuss the need for a multi-institutional study that combines features from different imaging modalities as well as computational techniques to definitively assess the utility of specific automated approaches to epilepsy imaging. We conclude that sharing and comparing these different computational techniques through a common data platform provides an opportunity to rigorously test and compare the accuracy of these tools across different patient populations and geographical locations. We propose that these kinds of tools, quantitative imaging analysis methods and open data platforms for aggregating and sharing data and algorithms, can play a vital role in reducing the cost of care, the risks of invasive treatments, and improve overall outcomes for patients with epilepsy.
منابع مشابه
Classifying the Epilepsy Based on the Phase Space Sorted With the Radial Poincaré Sections in Electroencephalography
Background: Epilepsy is a brain disorder that changes the basin geometry of the oscillation of trajectories in the phase space. Nevertheless, recent studies on epilepsy often used the statistical characteristics of this space to diagnose epileptic seizures. Objectives: We evaluated changes caused by the seizures on the mentioned basin by focusing on phase space sorted by Poincaré sections. Ma...
متن کاملDetection of Alzheimer\\\\\\\'s Disease using Multitracer Positron Emission Tomography Imaging
Alzheimer's disease is characterized by impaired glucose metabolism and demonstration of amyloid plaques. Individual positron emission tomography tracers may reveal specific signs of pathology that is not readily apparent on inspection of another one. Combination of multitracer positron emission tomography imaging yields promising results. In this paper, 57 Alzheimer's disease neuroimaging ini...
متن کاملP125: An Overview of the Effect of Inflammation Induced by Temporal Epilepsy on the Hippocampus and Amygdala Based on Nerve iImaging
Temporal epilepsy is a common neurological disorder that begins before adulthood. Two -way factors in causing epilepsy and continuing attacks can be inflammation that is caused by immune system and infection. The hippocampus and amygdala are part of a limbic system that relies on memory and emotional regulation. The purpose of this study was to review the effect of epileptic-induced inflammatio...
متن کاملBrain complexity increases during the manic episode of bipolar mood disorder type I
Fractal dimension of the electroencephalographic (EEG) signal has been argued to reflect the complexity of the underlying brain processes. To this date, conventional studies of EEG in mood disorders have not been able to distinguish between patients and normal individuals. Here we show that, compared to normal subjects, EEG fractal dimension is significantly augmented in the manic episode of bi...
متن کامل